Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Eur Respir Rev ; 32(169)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37437915

RESUMEN

Asthma is a chronic inflammatory airway disorder whose pathophysiological and immunological mechanisms are not completely understood. Asthma exacerbations are mostly driven by respiratory viral infections and characterised by worsening of symptoms. Despite current therapies, asthma exacerbations can still be life-threatening. Natural killer (NK) cells are innate lymphoid cells well known for their antiviral activity and are present in the lung as circulating and resident cells. However, their functions in asthma and its exacerbations are still unclear. In this review, we will address NK cell activation and functions, which are particularly relevant for asthma and virus-induced asthma exacerbations. Then, the role of NK cells in the lungs at homeostasis in healthy individuals will be described, as well as their functions during pulmonary viral infections, with an emphasis on those associated with asthma exacerbations. Finally, we will discuss the involvement of NK cells in asthma and virus-induced exacerbations and examine the effect of asthma treatments on NK cells.


Asunto(s)
Asma , Inmunidad Innata , Humanos , Asma/diagnóstico , Asma/terapia , Células Asesinas Naturales , Pulmón
2.
Eur J Immunol ; 53(4): e2250101, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36793156

RESUMEN

Epithelial cytokines are involved in the orchestration of T1/T2 inflammatory patterns. We question the persistence of this trait in air-liquid interface (ALI) epithelial cultures and whether this local orientation can be related to systemic patterns (e.g., blood eosinophil counts [BECs]). We investigated alarmin release related to high versus low T2 phenotypes associated with chronic airway diseases. ALIs were reconstituted from 32 control, 40 chronic obstructive pulmonary disease, and 20 asthmatic patients. Interleukin-8 (IL-8; a T1-cytokine), IL-25, IL-33, and thymic stromal lymphopoietin (T2-alarmins) concentrations were assessed in subnatants at steady state and used to explain blood neutrophil and eosinophil counts. IL-25 and IL-8 levels were highest in asthma ALI-subnatants, whereas IL-33 was sparsely detected. Thymic stromal lymphopoietin levels were similar among groups. All asthma cell cultures were T1-high/T2-high, while chronic obstructive pulmonary disease and controls tended to be mixed. BECs were independently explained by both disease and in-culture T2-alarmin levels, irrespective of the T2-alarmin considered. The epithelial ALI-T2 signature was more frequently high in patients with a BEC > 300/mm3 . Despite removal from an in vivo environment for ≥2 months, ALIs release disease-specific cytokine "cocktails" into their subnatants, suggesting continued persistence of alarmin orientation in differentiated cell line environments.


Asunto(s)
Asma , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Alarminas , Interleucina-33 , Eosinófilos , Interleucina-8 , Citocinas/metabolismo , Asma/genética , Linfopoyetina del Estroma Tímico
3.
HLA ; 100(5): 491-499, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35988034

RESUMEN

Uncontrolled inflammation of the airways in chronic obstructive lung diseases leads to exacerbation, accelerated lung dysfunction and respiratory insufficiency. Among these diseases, asthma affects 358 million people worldwide. Human bronchial epithelium cells (HBEC) express both anti-inflammatory and activating molecules, and their deregulated expression contribute to immune cell recruitment and activation, especially platelets (PLT) particularly involved in lung tissue inflammation in asthma context. Previous results supported that HLA-G dysregulation in lung tissue is associated with immune cell activation. We investigated here HLA-F expression, reported to be mobilised on immune cell surface upon activation and displaying its highest affinity for the KIR3DS1-activating NK receptor. We explored HLA-F transcriptional expression in HBEC; HLA-F total expression in PBMC and HBEC collected from healthy individuals at rest and upon chemical activation and HLA-F membrane expression in PBMC, HBEC and PLT collected from healthy individuals at rest and upon chemical activation. We compared HLA-F transcriptional expression in HBEC from healthy individuals and asthmatic patients and its surface expression in HBEC and PLT from healthy individuals and asthmatic patients. Our results support that HLA-F is expressed by HBEC and PLT under healthy physiological conditions and is retained in cytoplasm, barely expressed on the surface, as previously reported in immune cells. In both cell types, HLA-F reaches the surface in the inflammatory asthma context whereas no effect is observed at the transcriptional level. Our study suggests that HLA-F surface expression is a ubiquitous post-transcriptional process in activated cells. It may be of therapeutic interest in controlling lung inflammation.


Asunto(s)
Asma , Antígenos HLA-G , Alelos , Antiinflamatorios/farmacología , Asma/genética , Células Cultivadas , Células Epiteliales , Antígenos de Histocompatibilidad Clase I , Humanos , Inflamación , Leucocitos Mononucleares
4.
Int J Mol Sci ; 23(6)2022 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-35328521

RESUMEN

Platelets are small anucleate cells derived from the fragmentation of megakaryocytes and are involved in different biological processes especially hemostasis, thrombosis, and immune response. Despite their lack of nucleus, platelets contain a reservoir of megakaryocyte-derived RNAs and all the machinery useful for mRNA translation. Interestingly, platelet transcriptome was analyzed in health and diseases and led to the identification of disease-specific molecular signatures. Platelet contamination by leukocytes and erythrocytes during platelet purification is a major problem in transcriptomic analysis and the presence of few contaminants in platelet preparation could strongly alter transcriptome results. Since contaminant impacts on platelet transcriptome remains theoretical, we aimed to determine whether low leukocyte and erythrocyte contamination could cause great or only minor changes in platelet transcriptome. Using microarray technique, we compared the transcriptome of platelets from the same donor, purified by common centrifugation method or using magnetic microbeads to eliminate contaminating cells. We found that platelet transcriptome was greatly altered by contaminants, as the relative amount of 8274 transcripts was different between compared samples. We observed an increase of transcripts related to leukocytes and erythrocytes in platelet purified without microbeads, while platelet specific transcripts were falsely reduced. In conclusion, serious precautions should be taken during platelet purification process for transcriptomic analysis, in order to avoid platelets contamination and result alteration.


Asunto(s)
Plaquetas , Transcriptoma , Perfilación de la Expresión Génica , Leucocitos , Megacariocitos
5.
Biochem Biophys Res Commun ; 604: 151-157, 2022 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-35305419

RESUMEN

As opposed to surface marker staining, certain cell types can only be recognized by intracellular markers. Intracellular staining for use in cell sorting remains challenging. Fixation and permeabilization steps for intracellular staining and the presence of RNases notably affect preservation of high-quality mRNA. We report the work required for the optimization of a successful protocol for microarray analysis of intracellular target-sorted, formalin-fixed human bronchial club cells. Cells obtained from differentiated air-liquid interface cultures were stained with the most characteristic intracellular markers for club cell (SCGB1A1+) sorting. A benchmarked intracellular staining protocol was carried out before flow cytometry. The primary outcome was the extraction of RNA sufficient quality for microarray analysis as assessed by Bioanalyzer System. Fixation with 4% paraformaldehyde coupled with 0.1% Triton/0.1% saponin permeabilization obtained optimal results for SCGB1A1 staining. Addition of RNase inhibitors throughout the protocol and within the appropriate RNA extraction kit (Formalin-Fixed-Paraffin-Embedded) dramatically improved RNA quality, resulting in samples eligible for microarray analysis. The protocol resulted in successful cell sorting according to specific club cell intracellular marker without using cell surface marker. The protocol also preserved RNA of sufficient quality for subsequent microarray transcriptomic analysis, and we were able to generate transcriptomic signature of club cells.


Asunto(s)
Bronquiolos , Citometría de Flujo , Perfilación de la Expresión Génica , ARN Mensajero , Uteroglobina , Bronquiolos/citología , Citometría de Flujo/métodos , Formaldehído , Perfilación de la Expresión Génica/métodos , Humanos , Adhesión en Parafina , ARN Mensajero/aislamiento & purificación , Fijación del Tejido/métodos , Transcriptoma , Uteroglobina/química
6.
Life Sci ; 288: 120177, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34838847

RESUMEN

The airway epithelium is a dynamic tissue that undergoes slow but constant renewal. Dysregulation of airway epithelial function related to cigarette smoke exposure plays an important role in the pathophysiology of COPD. Oct4 is a transcription factor responsible for maintaining cellular self-renewal and regeneration, and CD146 and CD105/Endoglin are adhesion molecules involved in cell proliferation, differentiation, epithelial-mesenchymal-transition and tissue remodeling. Bronchial biopsy specimens (BBs) were obtained from 7 healthy controls (HC) and 10 COPD and subjected to paraffin embedding; BBs from HC were also used for epithelial cell expansion and pHBEC/ALI (air-liquid interface) culture. pHBEC/ALI were exposed to cigarette smoke extract (CSE) for 7, 14 and 21 days. In BBs, Oct4, CD146 and CD105 were evaluated by immunohistochemistry. In pHBEC/ALI, the expression of Oct4, CD146, CD105 and acetyl-αtubulin was evaluated by Western Blot, MUC5AC and IL-8 measurements by ELISA. The Oct4 epithelial immunoreactivity was lower in COPD than in HC, whilst CD146 and CD105 expression was higher in COPD than in HC. In pHBEC/ALI, Transepithelial Electrical Resistance values, measured over 7 to 21 days of differentiation, decreased by 18% (2.5% CSE) and 29% (5% CSE) compared to untreated samples. Oct4 and acetyl-αtubulin were induced after one-week differentiation and downregulated by CSE in reconstituted epithelium; CD146, CD105, MUC5AC and IL-8 were increased by CSE. Oct4 de-regulation and CD146 and CD105 overexpression, induced by cigarette smoke exposure, might play a role in airway epithelial dysfunction by causing changes in self-renewal and mesenchymal transition mechanisms, leading to alteration of epithelium homeostasis and abnormal tissue remodeling involved in progression of COPD.


Asunto(s)
Fumar Cigarrillos/efectos adversos , Endoglina/metabolismo , Transición Epitelial-Mesenquimal , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patología , Sistema Respiratorio/patología , Adulto , Anciano , Antígeno CD146/genética , Antígeno CD146/metabolismo , Estudios de Casos y Controles , Diferenciación Celular , Endoglina/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factor 3 de Transcripción de Unión a Octámeros/genética , Enfermedad Pulmonar Obstructiva Crónica/inducido químicamente , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Sistema Respiratorio/efectos de los fármacos , Sistema Respiratorio/metabolismo
7.
Eur Respir Rev ; 30(161)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34526315

RESUMEN

Platelets are small anucleate cells known for their role in haemostasis and thrombosis. In recent years, an increasing number of observations have suggested that platelets are also immune cells and key modulators of immunity. They express different receptors and molecules that allow them to respond to pathogens, and to interact with other immune cells. Platelets were linked to the pathogenesis of some inflammatory disorders including respiratory diseases such as asthma and idiopathic pulmonary fibrosis. Here, we discuss the involvement of platelets in different immune responses, and we focus on their potential role in various chronic lung diseases.


Asunto(s)
Enfermedades Pulmonares , Trombosis , Plaquetas , Hemostasis , Humanos , Inflamación
8.
Allergy ; 76(8): 2395-2406, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33283296

RESUMEN

PURPOSE: Asthma exacerbations are inflammatory events that rarely result in full hospitalization following an ER visit. Unfortunately, certain patients require prolonged support, including occasional external lung support through ECMO or ECCOR (with subsequent further exposure to other life-threatening issues), and some die. In parallel, biologics are revolutionizing severe asthma management, mostly in T2 high patients. METHODS: We extensively reviewed the current unmet needs surrounding ICU-admitted asthma exacerbations, with a focus on currently available drugs and the underlying biological processes involved. We explored whether currently available T2-targeting drugs can reasonably be seen as potential players not only for relapse prevention but also as candidate drugs for a faster resolution of such episodes. The patient's perspective was also sought. RESULTS: About 30% of asthma exacerbations admitted to the ICU do not resolve within five days. Persistent severe airway obstruction despite massive doses of corticosteroids and maximal pharmacologically induced bronchodilation is the main cause of treatment failure. Previous ICU admission is the main risk factor for such episodes and may eventually be considered as a T2 surrogate marker. Fatal asthma cases are hallmarked by poorly steroid-sensitive T2-inflammation associated with severe mucus plugging. New, fast-acting T2-targeting biologics (already used for preventing asthma exacerbations) have the potential to circumvent steroid sensitivity pathways and decrease mucus plugging. This unmet need was confirmed by patients who reported highly negative, traumatizing experiences. CONCLUSIONS: There is room for improvement in the management of ICU-admitted severe asthma episodes. Clinical trials assessing how biologics might improve ICU outcomes are direly needed.


Asunto(s)
Antiasmáticos , Asma , Productos Biológicos , Corticoesteroides/uso terapéutico , Adulto , Antiasmáticos/uso terapéutico , Asma/tratamiento farmacológico , Productos Biológicos/uso terapéutico , Humanos , Unidades de Cuidados Intensivos , Pulmón
9.
Cell ; 181(5): 1016-1035.e19, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32413319

RESUMEN

There is pressing urgency to understand the pathogenesis of the severe acute respiratory syndrome coronavirus clade 2 (SARS-CoV-2), which causes the disease COVID-19. SARS-CoV-2 spike (S) protein binds angiotensin-converting enzyme 2 (ACE2), and in concert with host proteases, principally transmembrane serine protease 2 (TMPRSS2), promotes cellular entry. The cell subsets targeted by SARS-CoV-2 in host tissues and the factors that regulate ACE2 expression remain unknown. Here, we leverage human, non-human primate, and mouse single-cell RNA-sequencing (scRNA-seq) datasets across health and disease to uncover putative targets of SARS-CoV-2 among tissue-resident cell subsets. We identify ACE2 and TMPRSS2 co-expressing cells within lung type II pneumocytes, ileal absorptive enterocytes, and nasal goblet secretory cells. Strikingly, we discovered that ACE2 is a human interferon-stimulated gene (ISG) in vitro using airway epithelial cells and extend our findings to in vivo viral infections. Our data suggest that SARS-CoV-2 could exploit species-specific interferon-driven upregulation of ACE2, a tissue-protective mediator during lung injury, to enhance infection.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , Enterocitos/metabolismo , Células Caliciformes/metabolismo , Interferón Tipo I/metabolismo , Mucosa Nasal/citología , Peptidil-Dipeptidasa A/genética , Adolescente , Células Epiteliales Alveolares/inmunología , Enzima Convertidora de Angiotensina 2 , Animales , Betacoronavirus/fisiología , COVID-19 , Línea Celular , Células Cultivadas , Niño , Infecciones por Coronavirus/virología , Enterocitos/inmunología , Células Caliciformes/inmunología , Infecciones por VIH/inmunología , Humanos , Gripe Humana/inmunología , Interferón Tipo I/inmunología , Pulmón/citología , Pulmón/patología , Macaca mulatta , Ratones , Mycobacterium tuberculosis , Mucosa Nasal/inmunología , Pandemias , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/virología , Receptores Virales/genética , SARS-CoV-2 , Serina Endopeptidasas/metabolismo , Análisis de la Célula Individual , Tuberculosis/inmunología , Regulación hacia Arriba
11.
Science ; 364(6442)2019 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-31123109

RESUMEN

Although spontaneous protein crystallization is a rare event in vivo, Charcot-Leyden crystals (CLCs) consisting of galectin-10 (Gal10) protein are frequently observed in eosinophilic diseases, such as asthma. We found that CLCs derived from patients showed crystal packing and Gal10 structure identical to those of Gal10 crystals grown in vitro. When administered to the airways, crystalline Gal10 stimulated innate and adaptive immunity and acted as a type 2 adjuvant. By contrast, a soluble Gal10 mutein was inert. Antibodies directed against key epitopes of the CLC crystallization interface dissolved preexisting CLCs in patient-derived mucus within hours and reversed crystal-driven inflammation, goblet-cell metaplasia, immunoglobulin E (IgE) synthesis, and bronchial hyperreactivity (BHR) in a humanized mouse model of asthma. Thus, protein crystals may promote hallmark features of asthma and are targetable by crystal-dissolving antibodies.


Asunto(s)
Inmunidad Adaptativa/efectos de los fármacos , Adyuvantes Inmunológicos/química , Adyuvantes Inmunológicos/farmacología , Asma/terapia , Glicoproteínas/química , Glicoproteínas/farmacología , Inmunidad Innata/efectos de los fármacos , Lisofosfolipasa/química , Lisofosfolipasa/farmacología , Adyuvantes Inmunológicos/administración & dosificación , Animales , Asma/inmunología , Asma/patología , Hiperreactividad Bronquial/inmunología , Hiperreactividad Bronquial/terapia , Cristalización , Modelos Animales de Enfermedad , Glicoproteínas/administración & dosificación , Glicoproteínas/inmunología , Células Caliciformes/inmunología , Células Caliciformes/patología , Humanos , Epítopos Inmunodominantes/inmunología , Inmunoglobulina E/inmunología , Lisofosfolipasa/administración & dosificación , Lisofosfolipasa/inmunología , Metaplasia , Ratones , Ratones Endogámicos C57BL , Moco/inmunología
12.
Am J Respir Cell Mol Biol ; 61(4): 501-511, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30943377

RESUMEN

The airway epithelium represents a fragile environmental interface potentially disturbed by cigarette smoke (CS), the major risk factor for developing chronic obstructive pulmonary disease (COPD). CS leads to bronchial epithelial damage on ciliated, goblet, and club cells, which could involve calcium (Ca2+) signaling. Ca2+ is a key messenger involved in virtually all fundamental physiological functions, including mucus and cytokine secretion, cilia beating, and epithelial repair. In this study, we analyzed Ca2+ signaling in air-liquid interface-reconstituted bronchial epithelium from control subjects and smokers (with and without COPD). We further aimed to determine how smoking impaired Ca2+ signaling. First, we showed that the endoplasmic reticulum (ER) depletion of Ca2+ stores was decreased in patients with COPD and that the Ca2+ influx was decreased in epithelial cells from smokers (regardless of COPD status). In addition, acute CS exposure led to a decrease in ER Ca2+ release, significant in smoker subjects, and to a decrease in Ca2+ influx only in control subjects. Furthermore, the differential expression of 55 genes involved in Ca2+ signaling highlighted that only ORAI3 expression was significantly altered in smokers (regardless of COPD status). Finally, we incubated epithelial cells with an ORAI antagonist (GSK-7975A). GSK-7975A altered Ca2+ influx and ciliary beating, but not mucus and cytokine secretion or epithelial repair, in control subjects. Our data suggest that Ca2+ signaling is impaired in smoker epithelia (regardless of COPD status) and involves ORAI3. Moreover, ORAI3 is additionally involved in ciliary beating.


Asunto(s)
Bronquios/citología , Canales de Calcio/fisiología , Calcio/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Mucosa Respiratoria/metabolismo , Fumar/metabolismo , Adulto , Anciano , Benzamidas/farmacología , Bronquios/metabolismo , Canales de Calcio/biosíntesis , Canales de Calcio/genética , Señalización del Calcio , Células Cultivadas , Cilios/efectos de los fármacos , Cilios/fisiología , Citocinas/metabolismo , Retículo Endoplásmico/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Femenino , Regulación de la Expresión Génica , Humanos , Interleucina-8/biosíntesis , Masculino , Persona de Mediana Edad , Mucina 5AC/biosíntesis , Moco/metabolismo , Pirazoles/farmacología , Mucosa Respiratoria/patología , Transducción de Señal/fisiología , Humo , Fumadores
13.
Clin Exp Allergy ; 49(6): 781-788, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30710420

RESUMEN

BACKGROUND: Goblet cell hyperplasia (GCH) is a pathological finding classically reported across asthma severity levels and usually associated with smoking. Multiple biological mechanisms may contribute to excessive mucus production. OBJECTIVE: We aimed to decipher the clinical meanings and biological pathways related to GCH in non-smokers with asthma. METHODS: Cough and sputum assessment questionnaire (CASA-Q) responses at entry and 1 year later were compared to clinical and functional outcomes in 59 asthmatic patients. GCH was assessed through periodic-acid shift (PAS) staining on endobronchial biopsies obtained at entry in a subset of 32 patients. RESULTS: Periodic-acid shift-staining analysis revealed a double wave distribution discriminating patients with (>10% of the epithelial area) or without GCH. CASA-Q scores were mostly driven by overall asthma severity (P < 0.0001). CASA-Q scores remained stable at 1 year and were independently associated with BAL eosinophil content irrespective of the presence of GCH. GCH was unrelated to the presence of bronchiectasis at CT, GERD or chronic rhinosinusitis, but correlated well with neutrophilic inflammatory patterns observed upon BAL cellular analysis (P = 0.002 at multivariate analysis). BALF bacterial loads were unrelated to GCH or to CASA-Q. CONCLUSIONS AND CLINICAL RELEVANCE: Goblet cell hyperplasia is disconnected from chronic cough and sputum when assessed by a specific questionnaire. GCH is related to neutrophilic asthma whereas symptoms are related to airway eosinophilia. The clinical counterpart of GCH is unlikely assessed by the CASA-Q.


Asunto(s)
Asma/patología , Células Caliciformes/patología , Índice de Severidad de la Enfermedad , Adulto , Anciano , Anciano de 80 o más Años , Asma/metabolismo , Femenino , Células Caliciformes/metabolismo , Humanos , Hiperplasia , Masculino , Persona de Mediana Edad
14.
Front Immunol ; 10: 2986, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32010122

RESUMEN

Little attention is paid to pseudogenes from the highly polymorphic HLA genetic region. The pseudogene HLA-H is defined as a non-functional gene because it is deleted at different frequencies in humans and because it encodes a potentially non-functional truncated protein. However, different studies have shown HLA-H transcriptional activity. We formerly identified 13 novel HLA-H alleles, including the H*02:07 allele, which reaches 19.6% in East Asian populations and encodes a full-length HLA protein. The aims of this study were to explore the expression and possible function of the HLA-H molecule. HLA-H may act as a transmembrane molecule and/or indirectly via its signal peptide by mobilizing HLA-E to the cell surface. We analyzed HLA-H RNA expression in Peripheral Blood Mononuclear Cells (PBMC), Human Bronchial Epithelial Cells (HBEC), and available RNA sequencing data from lymphoblastoid cell lines, and we looked to see whether HLA-E was mobilized at the cell surface by the HLA-H signal peptide. Our data confirmed that HLA-H is transcribed at similar levels to HLA-G. We characterized a hemizygous effect in HLA-H expression, and expression differed according to HLA-H alleles; most interestingly, the HLA-H*02:07 allele had the highest level of mRNA expression. We showed that HLA-H signal peptide incubation mobilized HLA-E molecules at the cell surface of T-Lymphocytes, monocytes, B-Lymphocytes, and primary epithelial cells. Our results suggest that HLA-H may be functional but raises many biological issues that need to be addressed.


Asunto(s)
Proteína de la Hemocromatosis/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Transcripción Genética , Alelos , Linfocitos B/metabolismo , Proteína de la Hemocromatosis/metabolismo , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Leucocitos Mononucleares/metabolismo , Señales de Clasificación de Proteína , Transporte de Proteínas , Linfocitos T/metabolismo
15.
Pharmacol Ther ; 197: 11-37, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30557630

RESUMEN

KIT is a receptor tyrosine kinase that after binding to its ligand stem cell factor activates signaling cascades linked to biological processes such as proliferation, differentiation, migration and cell survival. Based on studies performed on SCF and/or KIT mutant animals that presented anemia, sterility, and/or pigmentation disorders, KIT signaling was mainly considered to be involved in the regulation of hematopoiesis, gametogenesis, and melanogenesis. More recently, novel animal models and ameliorated cellular and molecular techniques have led to the discovery of a widen repertoire of tissue compartments and functions that are being modulated by KIT. This is the case for the lung, heart, nervous system, gastrointestinal tract, pancreas, kidney, liver, and bone. For this reason, the tyrosine kinase inhibitors that were originally developed for the treatment of hemato-oncological diseases are being currently investigated for the treatment of non-oncological disorders such as asthma, rheumatoid arthritis, and alzheimer's disease, among others. The beneficial effects of some of these tyrosine kinase inhibitors have been proven to depend on KIT inhibition. This review will focus on KIT expression and regulation in healthy and pathologic conditions other than cancer. Moreover, advances in the development of anti-KIT therapies, including tyrosine kinase inhibitors, and their application will be discussed.


Asunto(s)
Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-kit/antagonistas & inhibidores , Animales , Humanos , Proteínas Proto-Oncogénicas c-kit/química , Proteínas Proto-Oncogénicas c-kit/genética , Proteínas Proto-Oncogénicas c-kit/metabolismo , Transducción de Señal , Factor de Células Madre/genética , Factor de Células Madre/metabolismo
18.
Am J Respir Crit Care Med ; 197(11): 1396-1409, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29652177

RESUMEN

RATIONALE: Asthma is associated with increased lung IgE production, but whether the secretory IgA system is affected in this disease remains unknown. OBJECTIVES: We explored mucosal IgA transport in human asthma and its potential regulation by T-helper cell type 2 inflammation. METHODS: Bronchial biopsies from asthma and control subjects were assayed for bronchial epithelial polymeric immunoglobulin receptor (pIgR) expression and correlated to T-helper cell type 2 biomarkers. Bronchial epithelium reconstituted in vitro from these subjects, on culture in air-liquid interface, was assayed for pIgR expression and regulation by IL-4/IL-13. MEASUREMENTS AND MAIN RESULTS: Downregulation of pIgR protein was observed in the bronchial epithelium from patients with asthma (P = 0.0002 vs. control subjects). This epithelial defect was not observed ex vivo in the cultured epithelium from patients with asthma. Exogenous IL-13 and IL-4 could inhibit pIgR expression and IgA transcytosis. Mechanistic experiments showed that autocrine transforming growth factor-ß mediates the IL-4/IL-13 effect on the pIgR, with a partial contribution of upregulated transforming growth factor-α/epidermal growth factor receptor. CONCLUSIONS: This study shows impaired bronchial epithelial pIgR expression in asthma, presumably affecting secretory IgA-mediated frontline defense as a result of type 2 immune activation of the transforming growth factor pathway.


Asunto(s)
Asma/metabolismo , Asma/fisiopatología , Bronquios/metabolismo , Inmunoglobulina A Secretora/metabolismo , Inmunoglobulina A/metabolismo , Interleucina-4/metabolismo , Mucosa Respiratoria/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad
19.
Front Immunol ; 9: 278, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29527207

RESUMEN

Human leukocyte antigen (HLA)-G, a HLA class Ib molecule, interacts with receptors on lymphocytes such as T cells, B cells, and natural killer cells to influence immune responses. Unlike classical HLA molecules, HLA-G expression is not found on all somatic cells, but restricted to tissue sites, including human bronchial epithelium cells (HBEC). Individual variation in HLA-G expression is linked to its genetic polymorphism and has been associated with many pathological situations such as asthma, which is characterized by epithelium abnormalities and inflammatory cell activation. Studies reported both higher and equivalent soluble HLA-G (sHLA-G) expression in different cohorts of asthmatic patients. In particular, we recently described impaired local expression of HLA-G and abnormal profiles for alternatively spliced isoforms in HBEC from asthmatic patients. sHLA-G dosage is challenging because of its many levels of polymorphism (dimerization, association with ß2-microglobulin, and alternative splicing), thus many clinical studies focused on HLA-G single-nucleotide polymorphisms as predictive biomarkers, but few analyzed HLA-G haplotypes. Here, we aimed to characterize HLA-G haplotypes and describe their association with asthmatic clinical features and sHLA-G peripheral expression and to describe variations in transcription factor (TF) binding sites and alternative splicing sites. HLA-G haplotypes were differentially distributed in 330 healthy and 580 asthmatic individuals. Furthermore, HLA-G haplotypes were associated with asthmatic clinical features showed. However, we did not confirm an association between sHLA-G and genetic, biological, or clinical parameters. HLA-G haplotypes were phylogenetically split into distinct groups, with each group displaying particular variations in TF binding or RNA splicing sites that could reflect differential HLA-G qualitative or quantitative expression, with tissue-dependent specificities. Our results, based on a multicenter cohort, thus support the pertinence of HLA-G haplotypes as predictive genetic markers for asthma.


Asunto(s)
Asma/genética , Marcadores Genéticos/genética , Antígenos HLA-G/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Haplotipos , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
20.
Sci Rep ; 8(1): 2447, 2018 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29402960

RESUMEN

Mucociliary clearance is a biomechanical mechanism of airway protection. It consists of the active transport along the bronchial tree of the mucus, a fluid propelled by the coordinated beating of a myriad of cilia on the epithelial surface of the respiratory tract. The physics of mucus transport is poorly understood because it involves complex phenomena such as long-range hydrodynamic interactions, active collective ciliary motion, and the complex rheology of mucus. We propose a quantitative physical analysis of the ciliary activity and mucus transport on a large panel of human bronchial cultures from control subjects, patients with asthma and chronic obstructive pulmonary disease obtained from endobronchial biopsies. Here we report on the existence of multiple ciliary domains with sizes ranging from the tens of a micron to the centimeter, where ciliary beats present a circular orientational order. These domains are associated with circular mucus flow patterns, whose size scales with the average cilia density. In these domains, we find that the radial increase of the ciliated cell density coupled with the increase in the orientational order of ciliary beats result in a net local force proportional to the mucus velocity. We propose a phenomenological physical model that supports our results.


Asunto(s)
Bronquios/ultraestructura , Cilios/ultraestructura , Depuración Mucociliar/fisiología , Moco/fisiología , Mucosa Respiratoria/ultraestructura , Asma/metabolismo , Asma/fisiopatología , Fenómenos Biomecánicos , Bronquios/metabolismo , Bronquios/fisiopatología , Broncoscopía , Estudios de Casos y Controles , Cilios/metabolismo , Cilios/patología , Humanos , Hidrodinámica , Modelos Biológicos , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/fisiopatología , Reología , Técnicas de Cultivo de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...